Accumulation of extra-chloroplastic triacylglycerols in Arabidopsis seedlings during heat acclimation

نویسندگان

  • Stephanie P. Mueller
  • Daniel M. Krause
  • Martin J. Mueller
  • Agnes Fekete
چکیده

Heat acclimation enables plants to tolerate and survive short-term heat stress on hot days. In Arabidopsis thaliana, a genetically programmed heat shock response can be rapidly triggered in the temperature range of 32-38°C through activation of heat shock transcription factors (HSF). The heat shock response leads to heat acclimation and confers short-term protection against temperatures above 40°C. However, little is known about metabolic adjustments during heat acclimation.Untargeted metabolite analyses of A. thaliana seedlings revealed that levels of polyunsaturated triacylglycerols (TG) rapidly and dramatically increase during heat acclimation. TG accumulation was found to be temperature dependent in a temperature range of 32-50°C (optimum at 42°C) and reversible after a return from 37°C to normal growth temperatures. Heat-induced TGs accumulated in extra-chloroplastic compartments and increased in both roots and shoots to a similar extent. Analysis of mutants deficient in all four HSFA1 master regulator genes or the HSFA2 gene revealed that TG accumulation was not dependent on HSFs. Moreover, the TG response was not limited to heat stress because drought and salt stress also triggered an accumulation of TGs, but not short-term osmotic, cold, and high light stress. Lipid analysis revealed that heat-induced accumulation of TGs was not due to massive de novo fatty acid synthesis. It is hypothesized that TGs serve as transient stores for fatty acids that may be required for membrane remodelling during heat acclimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters

Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...

متن کامل

Natural populations of Arabidopsis thaliana differ in seedling responses to high-temperature stress

Little is known about adaptive within-species variation in thermotolerance in wild plants despite its likely role in both functional adaptation at range limits and in predicting response to climate change. Heat shock protein Hsp101, rapidly heat induced in Arabidopsis thaliana, plays a central role in thermotolerance in laboratory studies, yet little is known about variation in its expression i...

متن کامل

Heat acclimation and cross-tolerance against anoxia in Arabidopsis.

Arabidopsis seedlings are highly sensitive to low oxygen and they die rapidly when exposed to anoxia. Tolerance to anoxia depends on the ability to efficiently use carbohydrates through the fermentative pathway, as highlighted by the lower tolerance displayed by a mutant devoid of alcohol dehydrogenase. Other mechanisms of tolerance are also possible and may include a role for heat-induced gene...

متن کامل

The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis.

Anoxia induces several heat shock proteins, and a mild heat pretreatment can acclimatize Arabidopsis (Arabidopsis thaliana) seedlings to subsequent anoxic treatment. In this study, we analyzed the response of Arabidopsis seedlings to anoxia, heat, and combined heat + anoxia stress. A significant overlap between the anoxic and the heat responses was observed by whole-genome microarray analysis. ...

متن کامل

Involvement of the chloroplast signal recognition particle cpSRP43 in acclimation to conditions promoting photooxidative stress in Arabidopsis.

In this study, we have investigated the role of the CAO gene (coding for the chloroplast recognition particle cpSRP43) in the protection against and acclimation to environmental conditions that promote photooxidative stress. Deficiency of cpSRP43 in the Arabidopsis mutant chaos has been shown previously to lead to partial loss of a number of proteins of the photosystem II (PSII) antennae. In ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2015